New insights into the interactions between the antibiotic enrofloxacin and fish protein by spectroscopic, thermodynamic, and theoretical simulation approaches

Spectrochim Acta A Mol Biomol Spectrosc. 2024 Dec 24:330:125658. doi: 10.1016/j.saa.2024.125658. Online ahead of print.

Abstract

In this study, myofibrillar proteins (MPs) from crucian carp were utilized as a model to investigate the binding mechanism between fish proteins and antibiotic residues. Fluorescence quenching confirmed the static quenching (Ksv = 1.89 × 104 M-1 s-1, Kq = 1.89 × 1012 M-1 s-1) and effective binding (Kb = 5.66 × 106 M-1) of Enrofloxacin (ENRO) to MPs. Fourier-transform infrared spectroscopy and circular dichroism spectroscopy revealed that ENRO binding altered the secondary structure of MPs. The interaction mechanism, primarily driven by hydrogen bonding, electrostatic, and hydrophobic interactions (ΔH0 < 0, ΔS0 > 0), was elucidated using isothermal titration calorimetry. The ΔH0, -TΔS0 and ΔG0 values of the binding reaction between MPs and ENRO were -5.98 kJ/mol, -32.57 kJ/mol and -38.55kJ/mol. Molecular docking further verified the interaction forces, identifying key amino acid residues (Phe-40, His-93, and Lys-42) involved in ENRO binding. Additionally, protein carbonylation results demonstrated that even at maximum residue limits, ENRO accelerated MPs oxidation, further confirming the binding of the two. This study can provide theoretical support for the research of the dissipation fate of bound state residues in aquatic products.

Keywords: Binding interaction; Bound antibiotics; Enrofloxacin; Myofibrillar proteins; Protein carbonylation.