This study delves into the intriguing world of extrachromosomal DNA (ecDNA) in breast cancer, uncovering its pivotal role in cancer's aggressiveness and genetic variability. ecDNA, a form of circular DNA found outside chromosomes, is known to play a significant role in cancer progression by increasing oncogene expression. Focusing on two contrasting cell lines, MDA-MB-231 (triple-negative) and MCF-7 (Luminal-A), we utilized advanced microscopy and fluorescence techniques to detect and characterize ecDNA. Our findings reveal a stark difference: MDA-MB-231 cells, known for their high metastatic potential, exhibit a striking abundance of ecDNA, manifested as double minutes and single form with intense fluorescence signals. In contrast, the less aggressive MCF-7 cells harbor significantly fewer ecDNA. This disparity highlights the potential of ecDNA as a key player in cancer progression and a promising target for novel therapies. This research sheds light on the unseen genetic forces driving breast cancer and opens the door to new strategies in cancer treatment. Further research is necessary to understand the mechanisms of ecDNA formation and its role in different breast cancer subtypes.
Keywords: MCF‐7; MDA‐MB‐231; breast cancer; extrachromosomal DNA; fluorescence imaging.
© 2024 Wiley Periodicals LLC.