Background: Transgenic plants expressing proteins that target the eggs of the ubiquitous plant pest Bemisia tabaci (whitefly) could be an effective insecticide strategy. Two approaches for protein delivery are assessed using the mCherry reporter gene in transgenic tomato plants, while accommodating autofluorescence in both the plant, phloem-feeding whitefly and pedicle-attached eggs.
Results: Both transgenic strategies were segregated to homozygous genotype using digital PCR. The first strategy uses a glycotransferase secretion signal peptide. Despite bright apoplastic accumulation, mCherry is not evident in the eggs. The second strategy targets in vivo whitefly eggs, where the mCherry transgene was fused to a protein transduction domain (PTD) to facilitate uptake into the whitefly hemolymph as well as a synthetic vitellogenin ovary-targeting sequence. Phloem-specific expression of the mCherry fusion is achieved from a Commelina viral promoter. Accumulation was not sufficient to be observed in females feeding on these ovary-targeting plants nor in their eggs subsequently laid on non-transgenic plants. Egg protection may be mediated by protease activity which is observed in macerated eggs.
Conclusions: mCherry proved an effective reporter for the desired tissue-specific expression in tomato, but insufficiently sensitive to allow for localization in feeding whiteflies or their eggs. Segregated homozygous transgenic tomato lines were important for drawing these conclusions. The implications of these observations to possible pest-control strategies including preliminary expression of analogous chitinase constructs are discussed.
Keywords: Egg sterilization; GM crop; Insecticide; Tomato; Whitefly.
© 2024. The Author(s).