Genes in microorganisms influence the biological processes in anaerobic digestion (AD). However, key genes involved in the four metabolic steps (hydrolysis, acidogenesis, acetogenesis, and methanogenesis) remain largely unexplored. This study investigated the abundance and distribution of key functional genes in full-scale anaerobic digesters processing food waste (FWDs) and municipal wastewater (MWDs) through 16S rRNA gene and shotgun metagenomic analysis. Our results revealed that FWDs exhibited a higher abundance of key genes in the metabolic steps, despite having significantly lower microbial diversity compared to MWDs. Pathways and genes associated with syntrophic oxidation of acetate (SAO) and butyrate (SBO) were more present in FWDs. SAO potentially used both the conventional reversed Wood-Ljungdahl pathway and its integration with the glycine cleavage system in FWDs, which complements pathways for acetate oxidation under ammonia stress conditions. Similarly, genes associated with SBO (atoB and croR) were notably more prevalent in FWDs compared to MWDs with an 8.4-fold and 108-fold increase, respectively, indicating the adaptation of SBO bacteria to convert butyrate into acetate. The higher abundance of key genes in FWDs was driven by microbes adapting to the feedstock compositions with higher levels of substrate content, volatile fatty acids, and ammonia. This study quantified the genes central to AD metabolism and uncovered the contributions of microbial diversity, gene abundance, syntrophy, and feedstock characteristics to the functionality of AD processes. These findings enhance understanding of the microbial ecology in AD and provide a foundation for developing innovative strategies to enhance biogas production and waste management.
Keywords: Anaerobic digestion; food waste; key gene abundance; microbial compositions; microbial syntrophy; municipal wastewater.
Copyright © 2024. Published by Elsevier Ltd.