Major histocompatibility complex (MHC) class I load antigens and present them on the cell surface, which transduces the tumor-associated antigens to CD8+ T cells, activating the acquired immune system. However, many tumors downregulate MHC I expression to evade immune surveillance. The low expression of MHC I not only reduce recognition by- and cytotoxicity of CD8+ T cells, but also seriously weakens the anti-tumor effect of immunotherapy by restoring CD8+ T cells, such as immune checkpoint inhibitors (ICIs). Accumulated evidence suggested that restoring MHC I expression is an effective strategy for enhancing tumor immunotherapy. This review focuses on mechanisms underlying MHC I downregulation include gene deletion and mutation, transcriptional inhibition, reduced mRNA stability, increased protein degradation, and disruption of endocytic trafficking. We also provide a comprehensive review of small molecules that restore or upregulate MHC I expression, as well as clinical trials involving the combination of ICIs and these small molecule drugs.
Keywords: Expression regulation; Immune checkpoint inhibitors; MHC I; Small molecule compounds.
Copyright © 2024. Published by Elsevier B.V.