Recent studies revealed that the YTHDF family proteins bind preferentially to the N6-methyladenosine (m6A)-modified mRNA and regulate functions of these RNAs in different cell types. YTHDF2, the first identified m6A reader in mammals, has garnered significant attention because of its profound effect to regulate the m6A epitranscriptome in multiple biological processes. Here, we review current knowledge on the mechanisms by which YTHDF2 exerts its functions and discuss recent advances that underscore the multifaceted role of YTHDF2 in development, stem cell expansion and immune evasion. We also highlight potential therapeutic interventions targeting the m6A/YTHDF2 axis to improve the response to current antitumor therapies.
Published by Cold Spring Harbor Laboratory Press for the RNA Society.