The complex composition of real plastic wastes poses a significant challenge for their large-scale disposal. A responsive on-site compositional analysis of plastics is informative in choosing downstream processing methods. Nanocatalyst-based assay kit is highly qualified for this scene; however, there remain no efficient nanocatalysts for plastics due to their highly inert chemistry. Herein, we first unveiled the hydroxyl spillover effect in an Fe-Se dual-site catalyst (FeSe/NC) and devised a prototype colorimetric assay kit for mixed plastics. Experimental and theoretical results unveiled that Fe sites acted as the main active sites for H2O2 activation to produce adsorbed hydroxyl (*OH) intermediates, which subsequently desorb as hydroxyl radicals (•OH) and transfer to Se sites, supports, and even plastics for further catalysis. Specifically, •OH transferred to different plastics shows varying activities, where signal outputs were hereby used as the fingerprint for plastic identification. Moreover, the remaining *OH could respond to redox interferences in the samples for enhanced accuracy. In contrast to traditional techniques involving precise apparatus and complex pretreatments, our approach enables a rapid assay (∼10 min) of raw powdery mixed plastic wastes with an ultralow cost (0.0012 $). This discovery fills a crucial gap in the plastic assay, offering new technical guidance for diverse upcycling and recycling strategies to tackle the global plastic waste crisis.