Bioaccumulation and potential human health risks of PAHs in marine food webs: A trophic transfer perspective

J Hazard Mater. 2024 Dec 18:485:136946. doi: 10.1016/j.jhazmat.2024.136946. Online ahead of print.

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are persistent pollutants in aquatic environments that can accumulate in marine organisms and pose potential health risks to humans through trophic transfer in the food webs. However, the accumulation and health risks of PAHs in organisms at different trophic levels remain unclear. This study investigated the accumulation and trophic transfer of PAHs in 40 marine organisms from Beibu Gulf (China), and assessed their health risks. Utilizing the trophic level spectrum constructed with stable isotope methods, the organisms were categorized into three trophic levels: Omnivorous (15.00 %), low-level carnivorous (67.50 %), and mid-level carnivorous (17.50 %). The contamination levels of total PAHs in these organisms ranged from "mild pollution" to "moderate pollution", with all organisms exhibiting significant PAH accumulation (Bioconcentration factor value > 2000). Total PAH concentrations increased with higher trophic levels, following the trend of mid-level carnivores > low-level carnivores > omnivores. Notably, only three PAH compounds (Nap, Fla and Phe) showed biomagnification effects, while the others exhibited trophic dilution. Carcinogenic risk assessment indicated an "Unacceptable risk" level for all populations, with the highest risk due to consumption of mid-level carnivorous. These findings offer new insights into the accumulation and health risks of PAHs from a trophic transfer perspective.

Keywords: Biomagnification; Health risk assessment; Monte Carlo simulation; Stable isotope methods; Trophic level.