Vermicomposting significantly reduced antibiotic resistance genes in cow manure even under high tetracycline concentrations

Bioresour Technol. 2024 Dec 21:419:132002. doi: 10.1016/j.biortech.2024.132002. Online ahead of print.

Abstract

Minimizing antibiotic resistance genes (ARGs) in livestock manure is crucial for curbing ARG dissemination. Vermicomposting can eliminate ARGs, but the effect of residual antibiotics on its reduction efficacy remains unclear. Herein, Eisenia foetida was employed to convert cow manure with varying concentrations of tetracycline (i.e., 0, 10, 100 mg/kg), aiming to explore the impact of tetracycline on ARG fate during vermicomposting for 35 days. Results showed that the total ARG abundance in vermicomposting (0.05 copies/16S rRNA copies) was significantly lower than that in natural composting (0.06 copies/16S rRNA copies) (p < 0.05). Notably, exposure to tetracycline increased total ARG abundance (p < 0.05) and stimulated microbial succession during vermicomposting, with some ARGs increasing and others decreasing. But ARGs removal in vermicomposting was still higher even under tetracycline stress than that in natural composting. Overall, vermicomposting is an effective method for reducing ARGs in cow manure even at high tetracycline levels.

Keywords: Antibiotic resistance; Earthworm conversion; Livestock manure; Microbial succession; Tetracycline stress.