Purpose: Extranodal natural killer/T-cell lymphoma (ENKTCL) is an hematologic malignancy with prognostic heterogeneity. We aimed to develop and validate DeepENKTCL, an interpretable deep learning prediction system for prognosis risk stratification in ENKTCL.
Methods: A total of 562 patients from four centers were divided into the training cohort, validation cohort and test cohort. DeepENKTCL combined a tumor segmentation model, a PET/CT fusion model, and prognostic prediction models. RadScore and TopoScore were constructed using radiomics and topological features derived from fused images, with SHapley Additive exPlanations (SHAP) analysis enhancing interpretability. The final prognostic models, termed FusionScore, were developed for predicting progression-free survival (PFS) and overall survival (OS). Performance was assessed using area under the receiver operator characteristic curve (AUC), time-dependent C-index, clinical decision curves (DCA), and Kaplan-Meier (KM) curves.
Results: The tumor segmentation model accurately delineated the tumor lesions. RadScore (AUC: 0.908 for PFS, 0.922 for OS in validation; 0.822 for PFS, 0.867 for OS in test) and TopoScore (AUC: 0.756 for PFS, 0.805 for OS in validation; 0.689 for PFS, 0.769 for OS in test) both exhibited potential prognostic capability. The time-dependent C-index (0.897 for PFS, 0.928 for OS in validation; 0.894 for PFS, 0.868 for OS in test) and DCA indicated that FusionScore offers significant prognostic performance and superior net clinical benefits compared to existing models. KM survival analysis showed that higher FusionScores correlated with poorer PFS and OS across all cohorts.
Conclusion: DeepENKTCL provided a robust and interpretable framework for ENKTCL prognosis, with the potential to improve patient outcomes and guide personalized treatment.
Keywords: Deep learning; Extranodal NK/T-cell lymphoma; Machine learning; PET/CT; Radiomics; Survival analysis; Topological data analysis.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.