The JN.1-sublineage KP.3.1.1 recently emerged as the globally prevalent SARS-CoV-2 variant, demonstrating increased infectivity and antibody escape. We investigated how mutations and a deletion in the KP.3.1.1 spike protein (S) affect ACE2 binding and antibody escape. Mass spectrometry revealed a new glycan site at residue N30 and altered glycoforms at neighboring N61. Cryo-EM structures showed that the N30 glycan and rearrangement of adjacent residues did not significantly change the overall spike structure, up-down ratio of the receptor-binding domains (RBDs), or ACE2 binding. Furthermore, a KP.3.1.1 S structure with hACE2 further confirmed an epistatic effect between F456L and Q493E on ACE2 binding. Our analysis shows SARS-CoV-2 variants that emerged after late 2023 are now incorporating reversions to residues found in other sarbecoviruses, including the N30 glycan, Q493E, and others. Overall, these results inform on the structural and functional consequences of the KP.3.1.1 mutations, the current SARS-CoV-2 evolutionary trajectory, and immune evasion.