Decoding of movement-related cortical potentials at different speeds

Cogn Neurodyn. 2024 Dec;18(6):3859-3872. doi: 10.1007/s11571-024-10164-3. Epub 2024 Sep 1.

Abstract

The decoding of electroencephalogram (EEG) signals, especially motion-related cortical potentials (MRCP), is vital for the early detection of motor intent before movement execution. To enhance the decoding accuracy of MRCP and promote the application of early motion intention in active rehabilitation training, we propose a method for decoding MRCP signals. Specifically, an experimental paradigm is designed for the efficient capture of MRCP signals. Moreover, a feature extraction method based on differentiation is proposed to effectively characterize action variability. Six subjects were recruited to validate the effectiveness of the decoding method. Experiments such as fixed-window classification, sliding-window detection, and asynchronous analysis demonstrate that the method can detect motion intention 316 milliseconds before action execution and is capable of continuously detecting both rapid and slow movements.

Keywords: Asynchronous detection; Brain-computer interface; Electroencephalography; Intention detection; MRCP.