Interactions of a PFOS/sodium nitrite mixture in Chinese mitten crab (Eriocheir sinensis): Impacts on survival, growth, behavior, energy metabolism and hepatopancreas transcriptome

Comp Biochem Physiol C Toxicol Pharmacol. 2024 Dec 20:110114. doi: 10.1016/j.cbpc.2024.110114. Online ahead of print.

Abstract

Perfluorooctanesulfonic acid (PFOS) and sodium nitrite may have complex adverse effects on aquatic animals. This study assessed the interactive effects of PFOS and sodium nitrite on Chinese mitten crab (Eriocheir sinensis). A 2 × 3 factorial experiment with 0, 0.1, and 5 mg/L PFOS and 0, 3.50 mg/L sodium nitrite evaluated impacts on growth, behavior, oxygen consumption, health, energy metabolism, and hepatopancreas transcriptome. PFOS <0.1 mg/L with 3.50 mg/L nitrite significantly decreased PFOS accumulation in the hepatopancreas and improved feeding rates and hepatopancreas structure (P < 0.05). Under 5 mg/L PFOS and nitrite, survival, weight gain, hepatosomatic index, and feeding rate significantly decreased (P < 0.05). PFOS (0.1 mg/L) with nitrite significantly prolonged righting response time and increased locomotion speed (P < 0.05). PFOS (5 mg/L) significantly decreased serum triglyceride and lactate levels, while PFOS and nitrite decreased glucose, triglyceride, and glycogen levels and increased lactate in hepatopancreas (P < 0.05). Transcriptomic analysis indicated that PFOS affects p53 signaling, cell cycle and neurotransmission pathways, with notable changes in cell proliferation genes (pcna, ccna, cdk1, cdk2, rbx1) primarily downregulated by PFOS. Overall, PFOS disrupts neurotransmitter regulation and causes hepatopancreatic damage, while nitrite can reduce the toxicity of PFOS by decreasing its hepatopancreas accumulation. However, high levels of PFOS combined with sodium nitrite exacerbate toxicity, emphasizing the need for comprehensive assessment of environmental pollutant interactions.

Keywords: Combined toxicity; Eriocheir sinensis; PFOS; Sodium nitrite.