The effects of process parameters on the mechanical properties and degradation behavior of Fe/HA biodegradable materials

J Biomater Appl. 2024 Dec 20:8853282241310592. doi: 10.1177/08853282241310592. Online ahead of print.

Abstract

HA/Fe composites were prepared by powder metallurgy. The effects of ball milling time, pressing pressure, and sintering temperature on the porosity and hardness of the composites were investigated, and their mechanical properties and biocompatibility were evaluated. The results show that as the ball milling time increases (30∼60min), the average particle size initially decreases and then increases (82.91∼53.49∼77.98 μm). Additionally, an appropriate increase in pressing pressure and sintering temperature can decrease the composite's porosity and increase its hardness. When the pressing pressure is 27 KN and the sintering temperature is 1000°C, the composite material has excellent mechanical properties (hardness 268.5 Hv, compressive strength 106.736 MPa) and good in vitro biocompatibility. The hemolysis rate of the sample was 1.719518 %. When the concentration of the extract was 50 %, the cell proliferation rate could reach 136.26 %. Furthermore, the degradation properties of the composites were studied. At 12 months the corrosion rate of HA/Fe composites reached 0.3173 mm/a. It was also observed varying degradation mechanisms was different in different soaking cycles, and the dominant degradation mechanism was gradually changed from HA in the early stage to Fe in the later stage, which played a positive guiding role in the development of iron matrix composites with different degradation rates.

Keywords: Bio-composite; HA; biocompatibility; degradation; fe.