Serpentinizing hydrothermal vents are likely sites for the origin of metabolism because they produce H2 as a source of electrons for CO2 reduction while depositing zero-valent iron, cobalt, and nickel as catalysts for organic reactions. Recent work has shown that solid-state nickel can catalyze the H2-dependent reduction of CO2 to various organic acids and their reductive amination with H2 and NH3 to biological amino acids under the conditions of H2-producing hydrothermal vents and that amino acid synthesis from NH3, H2, and 2-oxoacids is facile in the presence of Ni0. Such reactions suggest a metallic origin of metabolism during early biochemical evolution because single metals replace the function of over 130 enzymatic reactions at the core of metabolism in microbes that use the acetyl-CoA pathway of CO2 fixation. Yet solid-state catalysts tether primordial amino synthesis to a mineral surface. Many studies have shown that pyridoxal catalyzes transamination reactions without enzymes. Here we show that pyridoxamine, the NH2-transferring intermediate in pyridoxal-dependent transamination reactions, is generated from pyridoxal by reaction with NH3 (as little as 5 mm) and H2 (5 bar) on Ni0 as catalyst at pH 11 and 80 °C within hours. These conditions correspond to those in hydrothermal vents undergoing active serpentinization. The results indicate that at the origin of metabolism, pyridoxamine provided a soluble, organic amino donor for aqueous amino acid synthesis, mediating an evolutionary transition from NH3-dependent amino acid synthesis on inorganic surfaces to pyridoxamine-dependent organic reactions in the aqueous phase.
Keywords: hydrogen; hydrothermal vents; native metals; origin of life; serpentinization.
© 2024 The Author(s). The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.