Benzo[ghi] perylene (b[ghi]p) is classified as non-carcinogenic to humans, and there are currently no occupational exposure models available to identify its effects. The aim of this work was to evaluate the effect of b[ghi]p on the lysosomes of NL-20 cells (a human bronchial cell line) exposed to 4.5 μM for 3 h. The effect was evaluated through an ultrastructural evaluation, morphological changes, and acridine orange staining of lysosomes. Superoxide was quantified; and SOD1, cathepsin B, LAMP1, galectin-3 and LC3α/β, and Rab7 expression was evaluated by immunocytochemistry. The expression of genes related to oxidative stress responses (NRF2, NQO1, HMOX1 and PRDX1) and genes related to autophagy (ULK1, ATG9, BCN1, VMP1, TMEM41B and p62) were quantified by RT-qPCR. The ultrastructural evaluation revealed an increase in autophagic vesicles and phagophores in cells exposed to b[ghi]p, as well as vesicles derived from mitochondria. Based on morphology, there were vesicles in the cytoplasm. B[ghi]p significantly decreased the number of lysosomes (p < 0.05), and NAC reverse this effect (p < 0.05). Superoxide production was observed from 30 min to 3 h (p < 0.05). Immunocytochemistry revealed increased galectin-3 and LC3α/β. All oxidative stress-related genes showed high expression (p < 0.05), and the expression of ATG9 gene was decreased (p < 0.05). These results demonstrate that b[ghi]p induces oxidative stress, responsible for producing the toxic effects in the lysosomes of NL-20 cells.
Keywords: Benzo[ghi]perilene; Bronchial cells; Cathepsin B; LMP; Lysosomes; PAH; Superoxide.
Copyright © 2024 Elsevier Ltd. All rights reserved.