Pair correlations for a polar liquid-crystal (LC) system have been theoretically investigated by means of integral equation approach. Using the dipolar Gay-Berne (GB) interactions between the molecules that composed the LC system, calculations of the nearest-neighbor (NN) and next-NN (NNN) correlators as well as the order parameters and the static dielectric coefficients were performed. It is shown that for a simple cubic packing, NN dipoles tend to be mutually antiparallel with respect to the central dipole, while the opposite trend was observed for NNN dipoles. Our calculations also show that the anisotropy of the nematic phase is not imposed by the symmetry of the system, but rather is a consequence of the dipolar GB potential.