Quetiapine competitively inhibits 5-HT3 receptor-mediated currents in NCB20 neuroblastoma cells

Korean J Physiol Pharmacol. 2024 Dec 18. doi: 10.4196/kjpp.24.363. Online ahead of print.

Abstract

The 5-hydroxytryptamine type3 (5-HT3) receptor, a ligand-gated ion channel, plays a critical role in synaptic transmission. It has been implicated in various neuropsychiatric disorders. This study aimed to elucidate the mechanism by which quetiapine, an atypical antipsychotic, could inhibit 5-HT3 receptor-mediated currents in NCB20 neuroblastoma cells. Whole-cell patch-clamp recordings were used to study effects of quetiapine on receptor ion channel kinetics and its competitive antagonism. Co-application of quetiapine shifted 5-HT concentration-response curve rightward, significantly increasing the EC50 without altering the maximal response (Emax), suggesting a competitive inhibition. Quetiapine's IC50 varied with 5-HT concentration and treatment condition. The IC50 value of quetiapine was 0.58 μM with 3 μM 5-HT and 25.23 μM with 10 μM 5-HT, indicating an inverse relationship between quetiapine efficacy and agonist concentration. Pretreatment of quetiapine significantly enhanced its inhibitory potency, reducing its IC50 from 25.23 μM to 0.20 μM. Interaction kinetics experiments revealed an IC50 of 5.17 μM for an open state of the 5-HT3 receptor, suggesting weaker affinity during receptor activation. Quetiapine also accelerated receptor deactivation and desensitization, suggesting that it could stabilize the receptor in non-conducting states. Additionally, quetiapine significantly prolonged recovery from desensitization without affecting recovery from deactivation, demonstrating its selective impact on receptor kinetics. Inhibition of the 5-HT3 receptor by quetiapine was voltage-independent, and quetiapine exhibited no usedependency, further supporting its role as a competitive antagonist. These findings provide insights into inhibitory mechanism of quetiapine on 5-HT3 receptor and suggest its potential therapeutic implications for modulating serotonergic pathways in neuropsychiatric disorders.

Keywords: 5-HT3 receptor; Competitive binding; Patch-clamp techniques; Quetiapine fumarate; Schizophrenia.