Changes in allele frequencies and genetic architecture due to selection in two pig populations

Genet Sel Evol. 2024 Dec 17;56(1):76. doi: 10.1186/s12711-024-00941-3.

Abstract

Background: Genetic selection improves a population by increasing the frequency of favorable alleles. Understanding and monitoring allele frequency changes is, therefore, important to obtain more insight into the long-term effects of selection. This study aimed to investigate changes in allele frequencies and in results of genome-wide association studies (GWAS), and how those two are related to each other. This was studied in two maternal pig lines where selection was based on a broad selection index. Genotypes and phenotypes were available from 2015 to 2021.

Results: Several large changes in allele frequencies over the years were observed in both lines. The largest allele frequency changes were not larger than expected under drift based on gene dropping simulations, but the average allele frequency change was larger with selection. Moreover, several significant regions were found in the GWAS for the traits under selection, but those regions did not overlap with regions with larger allele frequency changes. No significant GWAS regions were found for the selection index in both lines, which included multiple traits, indicating that the index is affected by many loci of small effect. Additionally, many significant regions showed pleiotropic, and often antagonistic, associations with other traits under selection. This reduces the selection pressure on those regions, which can explain why those regions are still segregating, although the traits have been under selection for several generations. Across the years, only small changes in Manhattan plots were found, indicating that the genetic architecture was reasonably constant.

Conclusions: No significant GWAS regions were found for any of the traits under selection among the regions with the largest changes in allele frequency, and the correlation between significance level of marker associations and changes in allele frequency over one generation was close to zero for all traits. Moreover, the largest changes in allele frequency could be explained by drift and were not necessarily a result of selection. This is probably because selection acted on a broad index for which no significant GWAS regions were found. Our results show that selecting on a broad index spreads the selection pressure across the genome, thereby limiting allele frequency changes.

MeSH terms

  • Animals
  • Gene Frequency*
  • Genome-Wide Association Study* / methods
  • Genotype
  • Phenotype
  • Polymorphism, Single Nucleotide
  • Quantitative Trait Loci
  • Selection, Genetic*
  • Swine / genetics