Female germline stem cells (FGSCs) are adult stem cells capable of self-renewal and differentiation into mature oocytes. AKT3, a member of the AKT kinase family, plays crucial roles in multiple cellular processes, such as proliferation, migration, and apoptosis. However, the mechanism by which AKT3 affects the development of FGSCs is poorly understood. We performed 4D-data-independent acquisition (DIA) Quantitative Proteomics on mouse FGSCs in which AKT3 was knocked down using a lentivirus and on control FGSCs. Based on the raw DIA data, coupled with database searches and data filtering, we identified 46,260 peptides, including 45,821 unique peptides, corresponding to 6849 identified proteins and 6697 comparable proteins. These identified proteins were functionally annotated using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Protein Domain, Clusters of Orthologous Genes (COG)/Eukaryotic Orthologous Groups (KOG), STRING database, Reactome, WikiPathways, HallMark, and transcription factor (TF) analyses. Fisher's exact test was used to assess the significance of functional enrichment of the differentially abundant proteins. We identified 281 differentially abundant proteins between AKT3 knockdown and control FGSCs, comprising 229 upregulated and 52 downregulated proteins. We performed clustering analysis on these differentially abundant proteins based on functional enrichment using GO, Domain, KEGG, Reactome and WikiPathways platforms. A protein-protein interaction network was constructed to demonstrate interactions between proteins. These datasets will facilitate future investigations into the mechanisms governing FGSC self-renewal and differentiation and will provide a foundation for understanding diseases related to abnormal germ cell development.
Keywords: FGSCs; Pathway analysis; Proteomics.
© 2024 The Author(s).