Low-heat expansive cement (LHEC) is an environmentally friendly and low-carbon cementitious material. Compared to ordinary Portland cement (OPC), LHEC reduces CO2 emissions from the cement production process; furthermore, it enhances the service life of the cement by overcoming the problem of OPC's strength inversion in hot and humid environments. In order to improve the performance of LHEC in a hygrothermal environment, the strength and expansion of LHEC with different gypsum dosages (8-20%) at curing temperatures of 20 °C, 50 °C, and 80 °C were investigated. The corresponding mechanism was investigated using XRD, TGA, SEM, and porosity analyses. The results indicate that there is a 'critical gypsum dosage' for strength at 20 °C. The 'critical dosage' rises with the curing temperature or an increase in age. Raising the curing temperature has a better effect on the strength of cement with a higher gypsum dosage; it does not have such a positive effect on cement with a low gypsum dosage. The higher the gypsum content, the greater the expansion rate, and the longer the time needed for the expansion to stabilize. The higher the curing temperature, the shorter the time required for stable expansion and the lower the final expansion rate. Increasing the gypsum dosage and maintaining the temperature promote the hydration of slag and the formation of ettringite (AFt), thereby enhancing the microstructure of the cement. AFt decomposition occurs in the case of a low gypsum dosage and high curing temperature. According to the above results, it is inferred that the strength and expansion performance of LHEC in a hygrothermal environment can be improved by appropriately increasing its gypsum dosage. This finding offers valuable insights for the improvement of LHEC and its application in hygrothermal conditions.
Keywords: LHEC; expansion; gypsum content; low-carbon cement; strength; temperature.