Development of Dopant-Free N,N'-Bicarbazole-Based Hole Transport Materials for Efficient Perovskite Solar Cells

Int J Mol Sci. 2024 Dec 6;25(23):13117. doi: 10.3390/ijms252313117.

Abstract

Efficient and stable hole-transport material (HTM) is essential for enhancing the efficiency and stability of high-efficiency perovskite solar cells (PSCs). The commonly used HTMs such as spiro-OMeTAD need dopants to produce high efficiency, but those dopants degrade the perovskite film and cause instability. Therefore, the development of dopant-free N,N'-bicarbazole-based HTM is receiving huge attention for preparing stable, cost-effective, and efficient PSCs. Herein, we designed and proposed seven distinct small-molecule-based HTMs (B1-B7), which are synthesized and do not require dopants to fabricate efficient PSCs. To design this new series, we performed synergistic side-chain engineering on the synthetic reference molecule (B) by replacing two methylthio (-SCH3) terminal groups with a thiophene bridge and electron-withdrawing acceptor. The enhanced phase inversion geometry of the proposed molecules resulted in reduced energy gaps and better electrical, optical, and optoelectronic properties. Density functional theory (DFT) and time-dependent DFT simulations have been used to study the precise photo-physical and optoelectronic properties. We also looked into the effects of holes and electrons and the materials' structural and photovoltaic properties, including light harvesting energy, frontier molecular orbital, transition density matrix, density of states, electron density matrix, and natural population analysis. Electron density difference maps identify the interfacial charge transfer from the donor to the acceptor through the bridge, and natural population analysis measures the amount of charge on each portion of the donor, bridge, and acceptor, which most effectively represents the role of the end-capped moieties in facilitating charge transfer. Among these designed molecules, the B6 molecule has the greatest absorbance (λmax of 444.93 nm in dichloromethane solvent) and a substantially shorter optical band gap of 3.93 eV. Furthermore, the charge transfer analysis reveals superior charge transfer with improved intrinsic characteristics. Furthermore, according to the photovoltaic analysis, the designed (B1-B7) HTMs have the potential to provide better fill factor and open-circuit voltages, which will ultimately increase the power conversion efficiency (PCE) of PSCs. Therefore, we recommend these molecules for the next-generation PSCs.

Keywords: bicarbazole-based donor; density functional theory; dopant-free; hole transporting material; perovskite solar cell.

MeSH terms

  • Calcium Compounds* / chemistry
  • Carbazoles / chemistry
  • Density Functional Theory
  • Electric Power Supplies
  • Oxides* / chemistry
  • Solar Energy*
  • Titanium* / chemistry

Substances

  • perovskite
  • Titanium
  • Calcium Compounds
  • Oxides
  • Carbazoles