Enzyme-powered nanomotors have attracted significant attention in materials science and biomedicine for their biocompatibility, versatility, and the use of biofuels in biological environments. Here, we employ a hybrid mesoscale method combining molecular dynamics and multi-particle collision dynamics (MD-MPC) to study the dynamics of nanomotors powered by enzyme reactions. Two cascade enzymes are constructed to be layered on the same surface of a Janus colloid, providing a confined space that greatly enhances reaction efficiency. Simulations indicate that such a configuration significantly improves the utilization of intermediate products and, consequently, increases the self-propulsion of the Janus motor. By presenting the gradient fields of substrates and products, as well as the hydrodynamics surrounding the motor, we explore the underlying mechanism behind the enhanced autonomous velocity. Additionally, we discuss the improvements in environmental safety of the modified motor, which may shed light on the fabrication of biocatalytic nano-machines in experiments.
Keywords: biosafety; enzyme cascade reactions; multiparticle collision dynamics; nanomotor; self-propulsion.