Enhancing the Stability and Anticancer Activity of Escherichia coli Asparaginase Through Nanoparticle Immobilization: A Biotechnological Perspective on Nano Chitosan

Polymers (Basel). 2024 Nov 23;16(23):3260. doi: 10.3390/polym16233260.

Abstract

There is a shortage in the experimental research directly comparing the effectiveness of different nanoparticles in boosting asparaginase (ASNase) activity. This study assessed the impact of various nanoparticles on enhancing ASNase activity, stability, and anticancer effects through immobilization. Escherichia coli ASNase was immobilized on different nanoparticles, and its efficiency was measured. The research included analyzing the enzyme's secondary structure, stability, activity at different temperatures, kinetic parameters, shelf life, and activity in blood serum. The anticancer efficacy was determined by measuring the IC50. The study also investigated the anticancer mechanisms by examining the enzyme's toxicity on cancer cells, focusing on apoptosis indicators like nuclear intensity, membrane permeability, mitochondrial membrane permeability, and cytochrome c release. Among the tested nanoparticles, nano chitosan yielded the best improvements. ASNase immobilized on nano chitosan reached 90% immobilization efficiency fastest among the studied nanoparticles, achieving this within 72 h, whereas other nanoparticles took 120 h. Immobilization modified ASNase's secondary structure by increasing alpha helices and reducing random coils, with nanochitosan and magnetic iron oxide showing the most pronounced effects. Immobilized ASNase exhibited enhanced activity, stability across temperature (widest with nanochitosan, 25-65 °C), and a broader optimal pH range compared to the free enzyme, with a Km of 1.227 mM and a Vmax of 454.54 U/mg protein. Notably, the nano-chitosan-immobilized ASNase retained over 85% of its activity after 9 months of storage and maintained high activity in blood serum. This improved stability and activity translated into the highest anticancer activity (Lowest IC50) and was more effective than doxorubicin in disrupting cancer cell structures.

Keywords: Michaelis constants (Km); catalytic efficiency; maximum velocity (Vmax); mitochondrial membrane; nano-chitosan; nuclear intensity; secondary structure; specificity constant.