Polymorphisms of TXK and PLCE1 Genes and Their Correlation Analysis with Growth Traits in Ashidan Yaks

Animals (Basel). 2024 Dec 4;14(23):3506. doi: 10.3390/ani14233506.

Abstract

The tyrosine protein kinase (TXK) gene, as a member of the non-receptor tyrosine kinase Tec family, plays a vital role in signal transduction mediation. Phospholipase C epsilon 1 (PLCE1), a membrane-associated enzyme, is of paramount importance for the differentiation of myoblasts and the normal functioning of muscle tissue. In recent years, both of these genes have been reported to be associated with the economic traits of animals. This study aimed to investigate the relationship between single nucleotide polymorphisms (SNPs) in the TXK and PLCE1 genes and growth traits in Ashidan yaks and to search for potential molecular marker loci that can influence Ashidan yak breeding. A cGPS liquid microarray was utilized to genotype 232 Ashidan yaks and to analyze correlations between two SNP loci in the TXK and PLCE1 genes and yak body weight, body height, body length, and chest circumference at different periods. The results indicated that the g.55,999,531C>T locus of the TXK gene and the g.342,350T>G locus of the PLCE1 gene were significantly correlated with the growth traits of Ashidan yaks. Among these, individuals with the CC genotype at the g.55,999,531C>T locus showed a significantly higher body length at 6 months old compared to TT individuals, and those with the CT genotype at 12 months old had a significantly higher chest circumference than TT individuals. At the g.342,350T>G locus, the body height of GG genotype individuals at 18 months of age was significantly higher than that of TT genotype individuals and TG genotype individuals. The above findings can be used as theoretical support for the subsequent improvement of Ashidan yak breeding.

Keywords: Ashidan yak; PLCE1 gene; TXK gene; correlation analysis; growth traits.