Two types of bismuth films (micro-Bi and nano-Bi) were prepared, and their electrocatalytic behavior was studied in terms of reduction current and product selectivity in a potential range of -0.776 to -1.376 V vs RHE. CO2 and H2O molecules competed with each other for reduction on the surfaces of both types of films, and formate and H2 were the respective major products of reductive reactions. Under the same conditions, nano-Bi exhibited lower selectivity for formate and higher selectivity for H2 compared to the respective micro-Bi cases with bismuth films of similar thickness. This can be attributed to the higher hydrophilicity of bismuth film surfaces of nano-Bi due to surface nanoscale roughness and lower surface-carbon content compared with those of micro-Bi. Our results suggest a new strategy for controlling the selectivity of electrocatalytic CO2 reduction under aqueous electrolytes through the use of surface engineering.
© 2024 The Authors. Published by American Chemical Society.