Plant roots grow in association with a community of microorganisms collectively known as the rhizosphere microbiome. Immune activation in response to elicitors like the flagellin-derived epitope flg22 restricts bacteria on plant roots but also inhibits plant growth. Some commensal root-associated bacteria are capable of suppressing the plant immune response to elicitors. In this study, we investigated the ability of 165 root-associated bacteria to suppress flg22-induced immune activation and growth restriction. We demonstrate that a type II secreted subtilase, which we term immunosuppressive subtilase A (IssA), from Dyella japonica strain MF79 cleaves the immune elicitor peptide flg22 and suppresses immune activation. IssA homologs are found in other plant-associated commensals, with particularly high conservation in the order Xanthomonadales. This represents a novel mechanism by which commensal microbes modulate flg22-induced immunity in the rhizosphere microbiome.
Keywords: CP: Microbiology; CP: Plants; Dyella; MAMP-triggered immunity; commensal; effector; flagellin; flg22; innate immunity; recombinant protein; serine protease; subtilase.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.