Development and function of the medial amygdala

Trends Neurosci. 2024 Dec 12:S0166-2236(24)00226-1. doi: 10.1016/j.tins.2024.11.004. Online ahead of print.

Abstract

Across studied vertebrates, the medial amygdala (MeA) is a central hub for relaying sensory information with social and/or survival relevance to downstream nuclei such as the bed nucleus of stria terminalis (BNST) and the hypothalamus. MeA-driven behaviors, such as mating, aggression, parenting, and predator avoidance are processed by different molecularly defined inhibitory and excitatory neuronal output populations. Work over the past two decades has deciphered how diverse MeA neurons arise from embryonic development, revealing contributions from multiple telencephalic and diencephalic progenitor domains. Here, we first provide a brief overview of current findings regarding the role of the MeA in social behaviors, followed by a deeper dive into current knowledge of how this complex structure is specified during development. We outline a conceptual model of MeA formation that has emerged based on these findings. We further postulate how embryonic developmental programming of the MeA may inform later emergence of stereotypical circuitry governing hardwired behaviors.

Keywords: embryogenesis; innate behavior; neural circuits; neuronal diversity; social behavior; transcription factors.

Publication types

  • Review