Active packaging is essential for reducing food quality loss and ensuring consumer safety. Recently, carbon dots, synthesized from agricultural bio-wastes, have been used as active nanofillers. Mango peels, generally discarded as waste, can serve as potential precursor for synthesis of carbon dots. Mango peel carbon dots (MPCD) were prepared and characterized. Characteristics of active film based on chitosan (CS)/fish gelatin (FG) blend incorporated with MPCD at different concentrations (1, 3, and 5 wt%) were investigated. MPCD with augmenting concentrations enhanced mechanical properties of CS/FG film. Film containing 5 % MPCD had 15 % higher tensile strength than the control (without MPCD). The film containing MPCD showed the improved antioxidant activity, antimicrobial and UV barrier properties. The pouch (5 × 5 cm2) made from film added with 5 % MPCD via heat sealing was used for packaging minced pork. Minced pork packed in the pouch showed lower bacterial growth (below 6 log CFU/g) and chemical changes than that packed in polyethylene pouch during 15 days of storage at 4 °C. Therefore, the conversion of mango peel into valuable carbon dots promotes a zero-waste sustainable approach in line with the biocircular economy. Active pouch could be employed as novel biodegradable active and green packaging for the food industry.
Keywords: Active film; Carbon dots; Ground pork; Hydrothermal carbonization; Mango peel; Pouch; Storage stability.
Copyright © 2024 Elsevier B.V. All rights reserved.