DNA replication origins play a crucial role in cellular division and are evolutionarily conserved across domains. This study investigated the evolutionary transitions of replication origins between archaea and bacteria by analyzing 2733 bacterial and 257 archaeal genomes. Our findings revealed that certain methanogens and bacteria share phylogenetic proximity, suggesting evolutionary interactions across diverse ecological systems. Evolutionary transitions in replication origins may have occurred between gut methanogens and bacteria, haloarchaea (Halogeometricum borinquense DSM 11551 and Halovivax ruber XH-70), halobacteria, and sulfur-reducing archaea. Methanosarcina barkeri (M. barkeri), Methanosaeta thermophila, and Methanococcoides burtonii (M. burtonii) were closely related to respiratory tract bacteria in humans. Methanohalobium evestigatum (M. evestigatum) is strongly linked to the animal gut pathogen Mycoplasma putrefaciens (M. putrefaciens). Several thermophilic hydrogenotrophic methanogens clustered with oral and fish pathogens. Pyrococcus furiosus (P. furiosus) was evolutionarily related to the replication origin of plant pathogens. This study sheds light on the ecological drivers of DNA replication origin evolution and their role in microbial speciation and adaptation. Our findings highlight the influence of mutualistic and parasitic relationships on these evolutionary transitions. It could have significant implications in biotechnology and medicine, such as developing novel antimicrobial strategies and understanding host-pathogen dynamics.
Keywords: archaea; environmental genomics; gut bacteria; molecular evolution; origin of replication; phylogenetics.
© 2024 Wiley‐VCH GmbH.