The Swine Influenza Virus (SIV) is a major respiratory pathogen in swine, causing acute, febrile, and highly transmissible infections. This virus is widespread globally and poses significant risks to human health and social development. Traditional prevention strategies for SIV rely on the use of inactivated vaccines combined with Alum adjuvants. However, this method is limited by insufficient protection due to the lack of cellular immunity provided by Alum adjuvants. In this study, we investigated the effect of lovastatin, a specific inhibitor of the mevalonate pathway, on the immune response in mice vaccinated with the H1N1 vaccine. We focused on its impact on antibody production, as well as T-cell and B-cell development. Our findings reveal that the combination of lovastatin and H1N1 vaccine (Lov/H1N1) significantly enhances the production of H1N1-specific serum IgG and hemagglutination inhibition (HI) antibodies. Additionally, it promotes T-cell activation in both draining lymph nodes (dLNs) and the spleen. Analysis of cytokines produced after antigenic restimulation of splenic lymphocytes from immunized mice showed that the Lov/H1N1 combination induces both Th1-type (IFNγ, TNFα) and Th2-type (IL4, IL6) responses. Moreover, Lov/H1N1 facilitates the formation of germinal centers (GCs), which are crucial for the generation of memory B cells and long-lived plasma cells. These results indicate that lovastatin is a promising adjuvant candidate, capable of inducing robust cellular and humoral immune responses, thereby overcoming the limitations of Alum adjuvants. Our study provides a foundation for future research on combined vaccine strategies, highlighting Lovastatin's potential to enhance vaccine efficacy through improved immune responses.
Keywords: H1N1; Immune responses; Lovastatin; Vaccine.
Copyright © 2024 Elsevier B.V. All rights reserved.