The development of the brain's vascular system is a predominantly prenatal process in mammalian species and is required for neurogenesis and further brain development. Our recent work on fetal pig has revealed that many neurodevelopmental processes start well before birth and proceed rapidly reaching near-mature status already around birth. Here, we analyzed the development of neocortical vasculature from embryonic day (E) 45 onward (gestation in pig lasts 114 days) using qualitative and quantitative image analyses and protein blots. In all cortical layers, vessel volume from total brain volume at E100 resembled that of a postnatal day (P) 30 piglet. Endothelial cells expressed the tight junction protein claudin-5 from E45 onward. GFAP+ and AQP4+ astrocytes, PDGFRβ+ pericytes, and α-SMA+ smooth muscle cells are detectable near vessels at E60 suggesting an early assembly of blood-brain barrier components. The vascular system in the visual cortex is advanced before birth with an almost mature pattern at E100. Findings were confirmed by blots that showed a steady increase of expression of tight junction and angiogenesis-related proteins (claudin-5, occludin, VE-cadherin, PECAM-1/CD31) from E65 onward until P90. The expression profile was similar in visual and somatosensory cortex. Together, we report a rapid maturation of the vascular system in pig cortex.
Keywords: GABAergic neurons; microglia cells; pericytic cells; porcine; ungulate.
© 2024 The Author(s). The Journal of Comparative Neurology published by Wiley Periodicals LLC.