Beyond chemical structures: lessons and guiding principles for the next generation of molecular databases

Chem Sci. 2024 Nov 28. doi: 10.1039/d4sc04064c. Online ahead of print.

Abstract

Databases of molecules and materials are indispensable for advancing chemical research, especially when enriched with electronic structure information from quantum chemistry methods like density functional theory. In this perspective, we review and analyze the current landscape of materials and molecular databases containing quantum chemical data. Our analysis reveals that the materials community has significantly benefited from data platforms such as the Materials Project, which seamlessly integrate chemical structures, electronic structure data, and open-source software. Conversely, quantum chemical data for molecular systems remains largely fragmented across individual datasets, lacking the comprehensive framework of a unified database. We distilled insights from these existing data resources into seven guiding principles termed QUANTUM, which build upon the foundational FAIR principles of data sharing (Findable, Accessible, Interoperable, and Reusable). These principles are aimed at advancing the development of molecular databases into robust, integrated data platforms. We conclude with an outlook on both short- and long-term objectives, guided by these QUANTUM principles, to foster future advancements in molecular quantum databases and enhance their utility for the research community.

Publication types

  • Review