Hypochlorous acid (HClO), one of the major reactive oxygen species, is obtained by electrolyzing a sodium chloride solution. HClO is a safe and effective disinfectant and decomposing agent widely used as an alternative to sodium hypochlorite (NaClO). In this study, the authors aimed to evaluate the safety and efficiency of HClO generated by electrolyzing sodium chloride as a decontaminant. Cyclophosphamide (CPA), an antineoplastic drug, was selected as the model drug, and various solvents (HClO, NaClO, etc.) were compared to identify the solvents that could react with and efficiently decompose CPA. To identify a solvent that efficiently decomposes CPA, the CPA concentration was measured using liquid chromatography with photodiode array detection. When either NaClO or HClO was used, the CPA concentration decreased, and a peak corresponding to 3-chloro CPA, identified by mass spectrometry, was detected. Furthermore, to investigate the reversibility of the reaction between CPA and ClO-, ClO- was removed from the reaction solution using solid-phase extraction, resulting in the previously decreased CPA concentration returning to nearly its original level. Occupational exposure to antineoplastic drugs poses a significant risk to worker health. This study's results suggest that CPA can be replaced by 3-chloro CPA when HClO is used as the wiping solvent like NaClO, thereby reducing occupational exposure from wiping. Future studies should investigate the wiping and degradation efficiencies of other anti-cancer agents. Occupational exposure to anti-cancer drugs can be significantly reduced by integrating various mitigation measures, thereby contributing to a safer work environment for healthcare professionals.
Keywords: Decontamination; degradation; exposure; sodium hypochlorite; wiping.