The hard disk medium (HDM) with a carbon overcoat (COC) is a fundamental component of a hard disk drive. The conventional test for its corrosion durability, known as the "HOT/WET test," requires considerable time and effort and does not provide any local information about the corrosion. Here, we address this issue by employing open-loop electric potential microscopy (OL-EPM), a potential measurement technique based on atomic force microscopy (AFM), for corrosion inspection. To explore the applicability of OL-EPM, we observed the surface of the HDMs with different COC thicknesses in a dilute HNO3 solution. Through time-dependent and high-resolution OL-EPM observations, we found that this technique can be used for detecting nanoscale COC defects. This is because the HDM surface under a COC defect is exposed to the solution and undergoes anodic dissolution, increasing the local potential around the defect. This is readily detected by OL-EPM even before corrosion product formation around the defects induces the topographic change. This work demonstrates that OL-EPM is useful not only for understanding the local corrosion mechanisms but also for detecting the COC defects in a much shorter time (∼3 h) than the HOT/WET test (3-4 days).
Keywords: atomic force microscopy; carbon-based overcoat; corrosion inspection; hard disk media; open-loop electric potential microscopy.