Plasmodium vivax, a significant contributor to global malaria cases, poses an escalating health burden on a substantial portion of the world's population. The increasing spread of P. vivax because of climate change underscores the development of new and rational drug-discovery approaches. The Seattle Structural Genomics Center for Infectious Diseases is taking a structure-based approach by investigating essential enzymes such as N-myristoyltransferase (NMT). P. vivax N-myristoyltransferase (PvNMT) is a promising target for the development of novel malaria treatments unlike current drugs, which target only the erythrocytic stages of the parasite. Here, the 1.8 Å resolution ternary structure of PvNMT in complex with myristoyl-CoA and IMP-1088, a validated NMT inhibitor, is reported. IMP-1088 is a validated nonpeptidic inhibitor and a ternary complex structure with human NMT has previously been reported. IMP-1088 binds similarly to PvNMT as to human NMT.
Keywords: N-myristoyltransferases; Plasmodium vivax; drug repurposing; inhibitor complexes; malaria.
open access.