Enhancing COVID-19 Vaccine Efficacy: Dual Adjuvant Strategies with TLR7/8 Agonists and Glycolipids

J Med Chem. 2024 Dec 9. doi: 10.1021/acs.jmedchem.4c01801. Online ahead of print.

Abstract

The controlled release of immunostimulatory agents represents a promising strategy to enhance vaccine efficacy while minimizing side effects. This study aimed to improve the efficacy of the RBD-Fc-based COVID-19 vaccine through combining of an iNKT cell agonist and a TLR7/8 agonist using covalent conjugation and temporal delivery. We hypothesized that these combinations would yield a more balanced Th1/Th2 immune response. For covalent conjugation, we employed an uncleavable linker and a self-immolative disulfide linker to conjugate α-galactosylceramide (αGC) to imidazoquinoline (IMDQ). The αGC-SS-IMDQ-Ac conjugate, designed with a prodrug strategy for controlled TLR7/8 agonist release, elicited a higher IFN-γ/IL-4 T cell response ratio than individual adjuvants or their admixture. In the temporal delivery approach, administering IMDQ followed by αGC after 2 h resulted in the highest IgG2a/IgG1 ratio, significantly surpassing other groups. A 6 h delay between glycolipid and IMDQ injections yielded balanced IgG responses, enhancing IgG, IgG1, and IgG2a levels synergistically.