Background: The supramammillary nucleus (SuM), located in the caudal hypothalamus, includes wake-promoting glutamatergic neurones. Their potential role in regulating states of consciousness during general anaesthesia remains unknown.
Methods: We used in vivo fibre photometry, c-Fos staining, chemogenetic and optogenetic manipulations, and electroencephalography/electromyography to explore the roles of glutamatergic SuM neurones (SuMVglut2 neurones) at different phases of sevoflurane anaesthesia. Rabies-mediated retrograde and anterograde tract tracing were used to investigate the monosynaptic glutamatergic inputs from the medial septum (MS) to SuM. Their roles in sevoflurane anaesthesia were investigated by in vivo fibre photometry and optogenetic manipulations.
Results: The population activity of SuMVglut2 neurones decreased at loss of consciousness but increased during recovery of consciousness under sevoflurane anaesthesia. Their activity also decreased during suppression but increased during bursts in sevoflurane-induced burst-suppression oscillations. Activating SuMVglut2 neurones chemogenetically or optogenetically decreased sensitivity to sevoflurane, induced behavioural arousal and cortical activation during continuous steady-state anaesthesia, and stable burst-suppression oscillations under sevoflurane. In contrast, chemogenetic or optogenetic inhibition of SuMVglut2 neurones increased sensitivity to sevoflurane or intensified cortical inhibition during sevoflurane anaesthesia. Retrograde and anterograde tracing verified monosynaptic projections from MSVglut2 neurones to SuMVglut2 neurones. The activity of MSVglut2 SuM terminals increased during loss of consciousness but recovered during recovery of consciousness. Optogenetic activation or inhibition of MSVglut2 SuM terminals induced cortical activation or inhibition, respectively, during sevoflurane anaesthesia.
Conclusions: Activation of SuMVglut2 neurones or the glutamatergic septo-supramammillary circuit induces behavioural arousal and cortical activation during sevoflurane anaesthesia.
Keywords: consciousness; glutamatergic neurones; mechanism of anaesthesia; medial septum; supramammillary nucleus.
Copyright © 2024 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.