Developing ultraviolet (UV), visible (Vis) and near-infrared (NIR) responsive photocatalysts for Cr(VI) reduction is valuable. Herein, a 0-dimensional/1-dimensional (0D/1D) S-scheme Ag2S/BiSI hetero-structured photocatalyst was successfully synthesized, which displays greatly enhanced Cr(VI) removal activity either under UV, Vis or NIR light irradiation. In-situ characterization technique and theoretical calculation confirm that an internal electric field (IEF), directing from Ag2S to BiSI, exists between the interface, which facilitates the spatial-oriented separation of photoirradiated carriers. Furthermore, the immobilization of Cr2O72- and the transformation from *Cr2O72- to *CrO3H2 on the surface of S-scheme Ag2S/BiSI heterostructure is much more favorable than that on the surface of single Ag2S or BiSI. This work gives a comprehensive insight on the design of full spectrum responsive S-scheme photocatalysts for heavy metal removal.
Keywords: 0D/1D S-scheme; Ag(2)S/BiSI; Cr(VI) reduction; Full spectrum.
Copyright © 2024 Elsevier Inc. All rights reserved.