Melanoma, the most prevalent form of skin cancer, is primarily treated with surgical intervention. However, complete tumor cell removal is challenging, and surgical wounds are prone to infection, complicating treatment and increasing costs. The successful treatment of melanoma generally requires multifunctional agents that are coordinated in tumor therapy and wound healing. In this study, we developed platinum (Pt)- and selenium (Se)-based nanozymes, Pt-Se@Chitosan (PS@CS), which exhibit synergistic antitumor and bactericidal efficacy attributed to their multienzyme activity and strong photothermal conversion efficiency. Furthermore, we engineered PS@CS hydrogels capable of inhibiting tumor regrowth postsurgery and accelerating healing of infected wounds. The PS@CS and PS@CS hydrogels presented herein incorporate characteristics including catalytic therapy, photothermal therapy, antibacterial properties, and skin damage healing, providing an innovative and comprehensive therapeutic approach for melanoma treatment.
Keywords: catalytic therapy; melanoma; nanozyme; photothermal therapy; wound healing.