Optimization strategy of the emerging memristors: From material preparation to device applications

iScience. 2024 Nov 6;27(12):111327. doi: 10.1016/j.isci.2024.111327. eCollection 2024 Dec 20.

Abstract

With the advent of the post-Moore era and the era of big data, advanced data storage and processing technology are in urgent demand to break the von Neumann bottleneck. Neuromorphic computing, which mimics the computational paradigms of the human brain, offers an efficient and energy-saving way to process large datasets in parallel. Memristor is an ideal architectural unit for constructing neuromorphic computing. It offers several advantages, including a simple structure, low power consumption, non-volatility, and easy large-scale integration. The hardware-based neural network using a large-scale cross array of memristors is considered to be a potential scheme for realizing the next-generation neuromorphic computing. The performance of these devices is a key to constructing the expansive memristor arrays. Herein, this paper provides a comprehensive review of current strategies for enhancing the performance of memristors, focusing on the electronic materials and device structures. Firstly, it examines current device fabrication techniques. Subsequently, it deeply analyzes methods to improve both the performance of individual memristor and the overall performance of device array from a material and structural perspectives. Finally, it summarizes the applications and prospects of memristors in neuromorphic computing and multimodal sensing. It aims at providing an insightful guide for developing the brain-like high computer chip.

Keywords: Engineering; Materials science; Physics.

Publication types

  • Review