Time-Resolved Spatial Distributions of Individual Components of Electroactive Films during Potentiodynamic Electrodeposition

ACS Phys Chem Au. 2024 Sep 3;4(6):615-619. doi: 10.1021/acsphyschemau.4c00055. eCollection 2024 Nov 27.

Abstract

Of the attributes that determine the performance of electroactive film-based devices, the least well quantified and understood is the spatial distribution of the component species. This is critical since it dictates the transport rates of all the mobile species (electrons, counterions, solvent, analyte, and reactant) and the film mechanical properties (as exploited in actuator devices). One of the few techniques able to provide individual species population profiles in situ is specular neutron reflectivity (NR). Historically, this information is obtained at the cost of poor time resolution (hours). Here we show how NR measurements with event mode data acquisition enable both spatial and temporal resolution; the latter can be selected postexperiment and varied during the transient. We profile individual species at "buried" interfaces under dynamic electrochemical conditions during polypyrrole electrodeposition and Cu deposition/dissolution. In the case of polypyrrole, the film is homogeneous throughout growth; there is no evidence of dendrite formation followed by solvent (water) displacement. Correlation of NR-derived film thickness and coulometric assay allows calculation of the solvent volume fraction, ϕS = 0.48. In the case of Cu in a deep eutectic solvent, the complexing nature of the medium results in time-dependent metal speciation: mechanistically, dissolution does not simply follow the deposition pathway in reverse.