Influence of scaffold geometry on the degradation rate of 3D printed polylactic acid bone scaffold

J Biomater Appl. 2024 Dec 4:8853282241297767. doi: 10.1177/08853282241297767. Online ahead of print.

Abstract

Fabricating scaffolds using three-dimensional (3D) printing is an emerging approach in tissue engineering (TE), where filaments with a controlled arrangement are printed. Using fused deposition modeling in bone replacement enables the simulation of bone structure. However, the microenvironment created by the scaffold must meet specific requirements. These requirements aim to create an environment that promotes adhesion, proliferation, differentiation, and cell migration. One of the challenges in creating polylactic acid scaffolds is controlling the degradation rate to match the target tissue. This study investigates the degradation of scaffolds with different geometries and the relationship between scaffolds' geometry and degradation rate. These scaffolds are made of polylactic acid and prepared using 3D printing. The lattice geometry was exposed to acidic media with varying pH levels for 1 month, and pH2 was selected for all geometries for further investigation. The five selected geometries were then immersed in the desired acid for 2 months, and measurements were taken for wet weight, dry weight, morphology, molecular weight, and crystallinity during degradation. The results showed that the hexagonal sample had a 1.5% increase in wet weight, and the gyroid sample had a 1.2% increase, indicating that the wavy shapes had a higher fluid-holding capacity. The degradation analysis indicated that the hexagonal geometry had accelerated degradation compared to the other geometries. Based on these findings, it can be concluded that filament separation not only results in rapid cooling and prevents the recovery of the crystalline arrangement but also increases the surface area to volume ratio, allowing for more acid penetration and faster degradation. Finally, mechanical properties and in vitro evaluation were assessed for three selected geometries. On the 60th day, the hexagonal scaffold had the highest elastic modulus value of 105 ± 0.45 MPa, while the gyroid scaffold had the lowest value of 58.8 ± 0.40 MPa. The lattice scaffold had the highest amount of cell attachment, with 210.88 ± 0.35 cells surviving after 24 hours and 94.01 ± 0.18 cells surviving after 72 hours. These high viability rates indicate that the three scaffolds with the selected geometries are suitable for promoting cell growth.

Keywords: Bone scaffold geometry; degradation; fused deposition modeling; polylactic acid.