PIK3CA-Related Overgrowth Spectrum: Exploring Brain Growth From Fetal to Infant

Pediatr Neurol. 2024 Nov 15:163:12-14. doi: 10.1016/j.pediatrneurol.2024.11.002. Online ahead of print.

Abstract

Background: Megalencephaly-capillary malformation-polymicrogyria syndrome (MCAP) is a rare neurological disorder characterized by abnormal brain size, vascular malformations, and body overgrowth. MCAP is caused by somatic mosaicism of PIK3CA, a crucial gene in regulation of cell growth and survival, and is one of the disorders in the PIK3CA-related overgrowth spectrum.

Methods: We present a unique clinical report of a male infant diagnosed with MCAP from prenatal stages to age 12 months. Prenatal imaging unveiled ventricular asymmetry, later confirmed postnatally as megalencephaly. Genetic analysis identified a PIK3CA mutation. The patient underwent early interventions, including ventriculoperitoneal shunt placement and posterior fossa decompression.

Results: Despite early interventions, the patient developed progressive macrocrania, hydrocephalus, and significant neurodevelopmental delay. Multidisciplinary management and continuous neuroimaging were crucial in addressing complications associated with the disorder.

Conclusions: This case underscores the critical need for multidisciplinary care and continual neuroimaging surveillance to effectively navigate the progressive complications associated with PIK3CA-related overgrowth spectrum. The diagnostic hurdles and management challenges intrinsic to the disorder's natural course are elucidated. Although current treatments manage symptoms, emerging therapies hold promise for improving patient outcomes.

Keywords: Brain growth; Megalencephaly; PIK3CA; Pediatric.