Binding multiple sites within proteins with bivalent compounds is a strategy for developing uniquely active agents. A new class of dual-site inhibitors has emerged targeting the epidermal growth factor receptor (EGFR) anchored to both the orthosteric (ATP) and allosteric sites. Despite proof-of-concept successes, enabling selectivity against oncogenic activating mutations has not been achieved and classifying these inhibitors among kinase inhibitors remains underexplored. This study investigates the structure-activity relationships, binding modes, and biological activity of ATP-allosteric bivalent inhibitors (AABIs). We find that AABIs selectively inhibit drug-resistant EGFR mutants (L858R/T790M and L858R/T790M/C797S) by anchoring a methyl isoindolinone moiety along the αC-helix channel of the allosteric site. In contrast, related Type I1/2 inhibitors target wild-type EGFR but are less effective against resistant mutants. This shift in selectivity demonstrates that mutant-selective AABIs classify as "Type V" bivalent inhibitors.