Probe-type optical fiber sensors for electric field distribution measurement

Rev Sci Instrum. 2024 Dec 1;95(12):125101. doi: 10.1063/5.0238530.

Abstract

This paper reports a compact fiber optical electric field (E-field) sensor aiming for the precise detection of transient E-field distributions. Here, a reflective polarization-reciprocal optical path is proposed, which inherently mitigates the temperature-induced birefringence interference of the electro-optical crystal without the need for additional optical elements, thereby facilitating a reduced-size sensing probe. Furthermore, an adaptive particle swarm optimization (A-PSO) algorithm has been utilized for the first time to optimize the insulation structure of the optical E-field sensor, which significantly suppresses field distortion within the sensing region by 50%. This method addresses the technical gap in optical E-field sensor structure optimization, providing an effective means to improve its spatial resolution. The experimental results demonstrate that the proposed sensor exhibits a broad response frequency range from 50 Hz to 15 MHz, with a sensitivity of 0.675 V/kV cm-1. The proposed sensor successfully monitors the spatial distribution of electric fields in the lightning interception region of a lightning rod, thereby validating its effectiveness.