The CML experience to elucidate the role of innate T-cells as effectors in the control of residual cancer cells and as potential targets for cancer therapy

Front Immunol. 2024 Nov 15:15:1473139. doi: 10.3389/fimmu.2024.1473139. eCollection 2024.

Abstract

Considering the general view that unconventional immune effectors play a major role in antitumor immunity, we recently postulated that the distinct new innate CD8 T-cell pool (co-expressing the transcription factor Eomesodermin and innate markers such as KIR/NKG2A) may counteract tumor cells, and thereby be potential target for cancer therapy. Here, to test this assumption, we used successfully targeted anti-leukemic therapy discontinuation (TFR) in chronic myeloid leukemia (CML). Numerical and functional status of innate CD8 T-cells, iNKT cells and γδ T-cells, in comparison with NK cells, was compared longitudinally between non-relapsed patients (i.e., with > 12 months TFR) and relapsed patients (i.e., who experienced molecular recurrence during the first 12 months after TKI cessation) in a prospective pilot cohort (n=32), starting from treatment discontinuation (D0). Perforin, a key cytotoxic immune player, was expressed in a significantly higher proportion of both innate CD8 T-cell and NK-cell subsets in non-relapsed patients, compared with relapsed patients at D0. In parallel, we assessed the expression of PD-1, an exhaustion marker used as target in cancer therapy. For all T-cell subsets, surface-expression level of PD-1 decreased in non-relapsed patients compared with relapsed patients at D0. This was particularly the case when considering iNKT cells for which surface-expression level of PD-1 even decreased relative to healthy control subjects. Lastly, we found a negative correlation between the proportion of innate CD8 T-cells expressing PD-1 and those expressing perforin in non-relapsed patients at D0. The fact that this was not the case in conventional CD8 T-cells is compatible with a reprogrammed effector profile preferentially targeting innate CD8 T-cells in non-relapsed patients. All in all, our results highlight NK cells and innate CD8 T-cells harboring cytotoxic content, as well as global downregulation of PD-1-expression on effector T-cells, as potential predictive functional signatures for successful TFR in CML. Considering innate CD8 T-cells, further investigations are needed to determine whether their possible contributory role in cancer surveillance in CML could be extended to other cancers, and also whether their targeting by immune cheek-point inhibitors could enhance their anti-tumoral functions.

Keywords: PD-1; T-cell effectors; biomarkers; chronic myeloid leukemia (CML); innate CD8 T-cells; innate immunity; perforin; predictive immune signature.

MeSH terms

  • Adult
  • Aged
  • CD8-Positive T-Lymphocytes* / immunology
  • Female
  • Humans
  • Immunity, Innate*
  • Killer Cells, Natural* / immunology
  • Killer Cells, Natural* / metabolism
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive* / drug therapy
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive* / immunology
  • Male
  • Middle Aged
  • Natural Killer T-Cells / immunology
  • Natural Killer T-Cells / metabolism
  • Pilot Projects
  • Prospective Studies

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study was supported by INSERM, CHU de Poitiers, Université de Poitiers, Ligue contre le Cancer (Herbelin 2023 Comité 86, Cayssials 2022 comité 86) (Comités départementaux de la Vienne, de la Charente, de la Charente Maritime et des Deux-Sèvres), France intergroupe des leucémies myéloïdes chroniques (Fi-LMC), Région Nouvelle Aquitaine, Association Laurette Fugain (ALF 2023/10), and Sport & collection. AB and AD were supported by fellowship provided by Sport & collection and by Région Nouvelle Aquitaine and CHU de Poitiers, respectively.