Silicon particles of intermediate sizes (75-200 nm) scatter visible wavelengths, making them promising candidates for optical devices. The solution synthesis of silicon particles in this size range, however, has proved challenging for chemists over the past few decades. Here, a solution-phase synthesis provides a pathway toward reaching size tunability between 45 and 230 nm via changing the reactant ratio in the reaction between a silicon Zintl phase (Na4Si4) with an amidinate-stabilized Si(IV) coordination complex. Coherent domain sizes, determined from powder X-ray diffraction, show that the crystallite sizes are uniform across all particle sizes, perhaps indicating an aggregation mechanism for particle growth. The amidinate ligands act to stabilize the particle surface. Combined surface techniques (ToF-SIMS, FTIR, and X-ray photoelectron spectroscopy) confirm the presence of amidinate ligands, as well as primary amine and a passive oxidation layer on the surface of the particles. The refractive index is measured for an individual particle using holographic optical microscopy, displaying a refractive index of nearly 4.1 at a wavelength of 532 nm. Thus, these particles should scatter light intensely at visible wavelengths, making them promising candidates for optical manipulation.
© 2024 The Authors. Published by American Chemical Society.