Red wine grape pomace is an important source of bioactive compounds with biological activities of interest. Grape pomace extract can be encapsulated in ultrafine fibers using the electrospinning technique. Encapsulation is used to increase stability and protect the phenolic compounds in the extract. In this study, zein fibers were developed for encapsulation of grape pomace extract (0 %, 5 %, 10 %, and 15 % w/w). The extract was evaluated for colorimetric profile, whereas the ultrafine zein fibers carrying the extract were assessed for morphology, loading capacity, in vitro release profile, thermal and thermogravimetric properties, thermal resistance, hydrophilicity, and antioxidant and antimicrobial activities. The grape pomace extract changed color depending on pH, ranging from pink (pH 1) to yellow (pH 13 and 14). The fibers presented a smooth and uniform structure, with diameters of approximately 450 nm and a loading capacity of up to 82 %. The membranes of ultrafine fibers demonstrated hydrophilic behavior, and the in vitro release profile was dependent on the concentration of the added extract. Furthermore, the fibers were observed thermally protect the encapsulated compounds and maintain their antioxidant and antimicrobial activities. These findings indicate that the produced material has potential applications in the development of active and intelligent packaging for the food industry.
Keywords: Bioactive compounds; Escherichia coli; Intelligent packaging; Staphylococcus aureus; Thermal stability; Zein.
Copyright © 2024 Elsevier Ltd. All rights reserved.