Self-organized cell patterning via mechanical feedback in hindbrain neuropore morphogenesis

bioRxiv [Preprint]. 2024 Nov 21:2024.11.21.624679. doi: 10.1101/2024.11.21.624679.

Abstract

Cell patterning is essential for organized tissue development, enabling precise geometric arrangement of cells, body axis establishment and developmental timing. Here we investigate the role of physical forces and mechanical cues in organizing and maintaining cell morphological patterns during hindbrain neuropore closure, a critical morphogenetic event in vertebrate development. Through live-imaging in mouse embryos and cell-based biophysical modeling, we demonstrate that active cell crawling and actomyosin purse-string contraction at the neuropore border are insufficient to account for the observed cellular arrangements in space and time. Instead, mechanosensitive feedback between cellular stress, shape, and nematic alignment is required to establish and maintain cell morphological patterns and their spatial order. This feedback-driven model generates persistent shape memory in cells, stalls cell rearrangements, and promotes local tissue solidification to preserve the spatial organization during the closure process. We validate this model experimentally, establishing the critical role of mechanical feedback in guiding tissue-level morphogenesis through active, force-driven patterning.

Publication types

  • Preprint